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The propagation of finite-amplitude internal waves in a shear flow is considered for 
wavelengths that are long compared to the shear-layer thickness. Both singular and 
regular modes are investigated, and the equation governing the amplitude evolution 
is derived. The theory is generalized to allow for a radiation condition when the region 
outside the stratified shear layer is unbounded and weakly stratified. I n  this case, the 
evolution equation contains a damping term describing energy loss by radiation which 
can be used to estimate the persistence of solitary waves or nonlinear wave packets in 
realistic environments. A continuous three-layer model is studied in detail and closed- 
form expressions are obtained for the phase speed and the coefficients of the non- 
linear and dispersive terms in the amplitude equation as a function of Richardson 
number. 

1. Introduction 
The propagation of nonlinear surface waves whose length is great compared to  the 

depth of the water has been studied extensively over the past century. Interest in 
the problem has been particularly strong during the last decade owing to the recently 
discovered properties of solitons. Analogous phenomena can occur in the context of 
long nonlinear internal waves, but the associated theory has, until recently, received 
relatively less attention. It is only now becoming recognized that such waves are 
likely to occur rather frequently both in the atmosphere and the oceans. Their existence 
requires that some feature of the basic flow profile or surroundings acts as a horizontal 
waveguide. This effect may be produced by either a nearby horizontal boundary or 
else a layer of moderately stratified fluid, above and below which the fluid is homo- 
geneous by comparison. The latter situation is commonplace, for example in the 
oceanic thermocline and in the region of atmospheric fronts. There is also generally a 
significant amount of shear present in such an environment. Yet, previous studies 
have for the most part ignored shear in the mean flow and, therefore, our principal 
objective here is to investigate its influence. 

The early studies of long nonlinear internal waves dealt with two-layer systems 
confined between horizontal boundaries and date back to the theoretical and experi- 
mental work of Keulegan (1953). Peters & Stoker (1960) seem to  have been the first 
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to consider solitary waves in a continuously stratified fluid. A convenient perturbation 
procedure for dealing with this class of problems was presented by Benney (1966), 
who applied his formulation to surface waves on a shear flow, internal waves and 
Rossby waves. The end result in each case was that the amplitude evolved according 
to the Korteweg-de Vries (KdV) equation 

A ,  + aAA, +PA,, = 0. 

1c. = 4 5  7) 4 ( Y ) ,  

(1.1) 

Here, the perturbation stream function has been expressed in the form 

where r is a slow time scale and [ describes slow spatial modulations in a co-ordinate 
system moving a t  the linear wave speed. The constants a and p are a property of the 
specific flow under consideration and their determination often requires a considerable 
computational effort. 

A significant advance in the study of long nonlinear internal waves took place in 
1967 with the concurrent appearance of papers by Benjamin and Davis & Acrivos 
dealing with the case where the fluid depth is large compared to an embedded wave 
guide scale. The long-wave limit of the linear dispersion relation is different in this 
case, leading to a modified form of the KdV equation in which the linear dispersive 
term is replaced by an integral. The equation can be written as 

and we shall refer to it as the mdKdV equation.? A most important contribution of 
Benjamin was to find a simple closed-form solitary wave solution to this nonlinear 
integro-differential equation. An N-soliton solution of (1.2) has been found recently 
by Chen, Lee & Pereira (1979) and by Matsuno (1979). 

The form of the dispersive term for intermediate ratios of the wave-guide scale to 
the fluid column depth has been derived by Kubota, KO & Dobbs (1978) and special 
solutions and properties of the resulting amplitude equation have been presented by 
Joseph (1977) and by Satsuma, Ablowitz & Kodama (1980). However, we consider 
only the two limiting cases for which (1.1 ) and (1.2) are applicable. 

As noted above, there is reason to believe that the long waves under discussion are 
significant in the context of geophysical fluid dynamics. Internal solitons, in the 
absence of shear, are stable and very easy to generate in the laboratory as was origin- 
ally pointed out by Davis & Acrivos. This suggests that they ought to be observable 
in the oceans and atmosphere and, in fact, a number of tentative observations have 
been reported in the literature. For example, Christie, Muirhead & Hales (1978) have 
published microbarograph data indicating the occurrence of solitary waves over 
central Australia in a variety of circumstances. Similarly, it  is likely that long or 
solitary internal waves were present in the satellite observations of oceanic wave- 
packets reported by Ape1 et al. (1975). Certainly, the longer of these waves ought to  
be describable by a theory such as the one presented here, because the wavelengths 

t This acronym, denoting the modified dispersive KdV equation, is chosen because the equation 
describes the balance between the leading-order nonlinear and dispersive terms in the long-wave 
limit. We prefer to designate the class of equations possessing this balance as being of KdV type. 
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were as much as 40 times the relevant vertical length scale. Some nonlinear features 
were noted by Ape1 et al. and, indeed, the measured amplitudes were great enough for 
one to expect that to be the case. 

Although simultaneous measurements of shear were not available, there was reason 
to believe in each of these cases that a significant shear was present. For example, the 
satellite observations of internal wave packets were correlated with semidiurnal and 
diurnal tides a t  the edge of the continental shelf. Farmer & Smith (1978) report 
measurements of internal solitary waves in Knight Inlet, British Columbia, and em- 
phasize that the waves were propagating in a strongly sheared flow. In  the atmospheric 
case, Christie et al. discuss a number of possible generating mechanisms, finally con- 
cluding that the observed solitary waves were associated with sea-breeze currents. 
While attempting to make comparisons between their data and the theoretical work 
available at the time, these authors (p. 817) state, ‘Perhaps the most serious criticisms 
of the direct application of these models to nonlinear wave propagation in the earth’s 
atmosphere are the neglect of wind shear and the over-simplification of the fluid 
density structure’. Obviously, we agree. 

Before commenting on the density structure, we should note that a start has 
been made in assessing the influence of shear in a paper by Lee & Beardsley (1974). 
These authors examined only the KdV limit (flow between horizontal boundaries), 
treating a two-layer case in some detail. However, in their discussion of the continuous 
case, they failed to consider the possibility of singular modes (i.e. modes having a 
critical point where the phase speed is equal to the mean flow velocity). Such modes 
can exist a t  O( 1)  Richardson numbers provided that nonlinear effects, rather than 
diffusive effects, dominate in the critical-layer region. This was demonstrated by 
Maslowe (1973) who obtained a numerical solution for a stratified mixing layer. In  
$ 3  of the present paper this point is made more explicitly in that singular long-wave 
solutions are obtained in closed form. Thus the present study, in many respects, 
parallels the work of Redekopp (1977) who investigated Rossby wave solitons. In  
that case as well, both regular and singular neutral-mode solutions are possible and 
a nonlinear critical-layer analysis was employed to obtain a uniformly valid solution. 

Returning now to the subject of the density profile, previous studies have assumed 
the outer region in the unbounded case to be homogeneous. However, that is generally 
not the case in the real atmosphere and oceans, and that fact turns out to be most 
pertinent in the long-wave theory. It is shown below that for a given non-zero value 
of the Brunt-Vaisala frequency there is a definite restriction placed upon the mini- 
mum value of the amplitude for which permanent waves are possible. A particularly 
interesting case occurs when the stratification is small enough so that permanent 
nonlinear waves can occur, but a radiation condition applies in the outer region. 
Additional terms must then be included in (1.2) and these have the effect of a linear 
damping mechanism. This result is not surprising in retrospect because it is known 
from other problems that a radiation condition acts in the same manner as a small 
dissipative term. The derivation of the requisite evolution equation for this case is 
presented in § 2.2 and the damping characteristics for a solitary wave are discussed 
in $4. 
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2. Derivation of the amplitude equations 

of motion are 
We consider two-dimensional motion of a Boussinesq fluid for which the equations 

v . q = 0, q = (US(Z)  + u., w}, 

Pt + (q . V)P  + wPx4 = 0, 

PO PO 

The undisturbed hydrostatic state with the ambient density distribution p,(x) and a 
horizontal, parallel shear flow UJZ)  has been removed in these equations. Hence p 
denotes the local departure of the fluid density from the ambient and po is a constant 
reference density used in the Boussinesq approximation. We introduce non-dimen- 
sional variables by scaling time with N i l ,  where No is a reference value (the maximum, 
say) of the Brunt-Vaisala frequency, space co-ordinates with L, a typical vertical 
scale associated with the stratified shear Iayer, scaling velocities with No L, and scaling 
the perturbation buoyancy (gp/po) by N i  L. Then, after defining a stream-function 
and buoyancy variable by 

I Y = { U(z’) - c> dz’ + E$(X,  2, t ) ,  Jz: 
I u = $ @  w=-$,, 

e o  = E c T ( X ,  2, t ) ,  
N i L  

( 2 . 1 ~ )  

( 2 . l b )  

the equations of motion can be written in the form 

{at + ( U  - a, + E ( j + z  a, - $% a,)} (7 + N 2 ( 4  $x = 0, 

{a, + (u - C) a, + E ( $ ~  a, - 1C;a2)} v2j+ - u “ ~ ,  = c,. 

(2.2) 

(2.3) 

The perturbed flow, with non-dimensional amplitude 0 < E < 1, is referenced to a co- 
ordinate system moving with the linear, long-wave phase speed c. All variables in 
these equations are non-dimensional and the mean shear flow U(x) has the definition 

where Uo is a measure of the velocity difference across the shear layer. In most of 
the following discussion we consider situations where the internal Froude number 
F - O( 1), but reference to the limit F J. 0 will be made a t  several points to make 
connexion with previous results for unsheared environments. Although the form of 
the velocity profiIe V ( z )  is kept arbitrary in the following derivations, the scale 
of the sheared layer is assumed to be no greater than that of the stratified layer so 
that the local Richardson number is everywhere greater than one-quarter. 

2.1. Shallow-water theory: the Kd V equation 
We discuss first the case where the stratified shear flow is bounded above and below 
by rigid, horizontal planes with a separation distance of the same order as L. Then, 
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if the wavelength is long compared to  the shear flow, it is also long compared to  the 
fluid depth and the usual KdV theory prevails (albeit with due consideration of the 
critical-layer region where the phase speed c is equal to the local flow velocity a t  some 
level z,, say). 

If, for the moment, we restrict the discussion to a single mode without a critical 
layer, it is straightforward to show that the asymptotic solution for e 4 0 in which the 
leading-order effects of nonlinearity and dispersion are balanced is given by 

)cr = A ( ~ , T ) ~ ( X ) + s { A 5 5 $ ( d 2 ) ( Z ) + g A 2 $ ~ ) ( Z ) } + . . .  , ( 2 . 5 ~ )  

(2.5b) 

The quantities $ ( z )  and c are determined from the eigenvalue problem 

and A(<,  7) satisfies the KdV equation ( 1 . 1 ) .  The slow space and time scales for the 
amplitude function A (6,r) are 

The 1 :  3 ratio between the space and time scales derives from the linear dispersion 
relation and the €4 scale for 6 emerges from the requirement that the effects of non- 
linearity and dispersion contribute a t  the same order in the expansion. The coefficients 
a and p in the KdV equation are determined by solvability conditions on the in- 
homogeneous equations 

6 = E J X ,  7 = et’t. (2.7) 

-Ep$g’ = ~ (p2  { U”( U - c)2 - U n U f (  I T  - C )  - 2( U - C) (N2)‘ + 3U’N2} 
(U-c)4 

6 
2N2 - U”( U - C )  

-a 
(U-C)3  

These equations have homogeneous boundary conditions a t  z = zl, z2. Therefore, the 
coefficients are 

za .=‘s - 43 { U / ~ ~ ( U - C ) 2 -  U”U’(U-c)-2(U-c)(N2)‘+3U”2}dz,  (2.10a) 

p = - -1 p d t ,  

where Il =JYL [2N2-  U”( u -c)] dz. (2.10c) 

4 21 (u-c)4 
(2.10 b )  

1 2.2 
and 

4 21 

(U-C)3  

Observe that the coefficient a vanishes if there is no shear and if N is constant. In  
this limit the nonlinearity derives from the non-Boussinesq terms which are neglected 
here (cf. Benjamin 1966, Long 1965). Either a weak shear or non-constant Brunt- 
Vaisala frequency distribution are sufficient to contribute a quadratic nonlinear term 
to the amplitude evolution equation even when the variable density effects are neg- 
lected in the inertial terms. I n  most practical cases these effects are more significant 
than the small non-Boussinesq terms. 
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(a ) (b ) 

FIGURE 1. Flow models of unbounded stratified shear flows. 

When a critical layer is present, some of the integrals in (2.10) do not exist and a 
modified solvability condition must be employed (cf. Redekopp 1977). The theory 
carries through leading to the same amplitude evolution equation providing the 
nonlinearity is sufficiently strong for all times within the critical-layer region. This 
is discussed further in $ 2.3 and analytic results are obtained for singular neutral modes 
in a specific-shear flow in 5 3. 

2.2. Deep-water theory: the mdKdV equation 

Let us now consider the case where the stratified shear flow with vertical scale L exists 
in an unbounded fluid domain. The fluid outside this wave guide is assumed to be un- 
sheared and only weakly stratified. We have in mind flow configurations such as those 
shown in figure 1 .  The analysis will address the configuration shown in figure I (a).  
Calculations for specific cases of both configurations will be presented in $3.2.  

One of the objectives here is to determine how weak the stratification outside the 
primary wave guide must be in order for long, nonlinear waves with nearly zero fre- 
quency to be ducted along the wave guide. We know that, on a linear basis, waves with 
frequency w cannot propagate in regions where the Brunt-Vaisalli frequency is less 
than w .  However, in the case of nonlinear waves, we expect that this condition will 
depend in some way upon the wave amplitude. 

(a )  The inner solution. The appropriate slow space and time scales in the present 
case are 

[ = EX, r = e2t, (2.11) 

and these are consistent with the evolution equation (1.2). Introducing these ‘slow’ 
variables and expanding the dependent variables in the manner 

+ = A ( [ , T ) Q ( Z ) + € p +  ..., (2.12a) 

g = - A -  N29 + € d 2 )  + . . . , u-c (2.12 6 )  

the same eigenvalue equation as in (2.6) is obtained except that the boundary con- 
ditions are modified to 

$(O) = 0, limQ(z) = 0. 
2- m 

(2.13) 
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Clearly, there are no non-trivial solutions of (2.6) satisfying these conditions when 
U", N2 + 0 as z -+ 00, and, hence, the flow outside the wave-guide region must be 
considered separately (resealed) and then matched to the (inner) solution of (2.6) 
valid within the wave guide. The necessity of the inner and outer matching is clear 
from the original work of Benjamin (1967) and Davis & Acrivos (1967). However, 
before moving on to consider that aspect of the analysis in the present context, we 
write the second-order equation in the inner region 

2N2 - ( U - c )  U" 
$ + AA, [ U///(  u - c ) 2  

N2 

- U ' U " ( U - c ) - 2 ( U - c ) ( N 2 ) ' + 3 U ' N 2 ] -  $2 

( U  -c)4'  

2N2 - ( U - c )  U" 
$ + AA, [ U///(  u - c ) 2  

N2 

- U ' U " ( U - c ) - 2 ( U - c ) ( N 2 ) ' + 3 U ' N 2 ] -  $2 

( U  -c)4'  

(2.14) 

(2.15) 

A separable solution for is possible having the form 

@(2) = B(A) f ( z )  + &A2g(z),  

with A(<, 7) satisfying the evolution equation 

A ,  + yAAc + 6(9(A)) ,  = O(6).  (2.16) 

Substituting (2.15) and (2.16) into (2.14) and invoking solvability yields, for non- 
critical-layer modes, 

(2.17) 

and 
W 

lim {#g' - #'g) = 1 ~ " [U'"( U - c ) ~  - U"U'( U - c) - 2( U - c) (N2)' + 3U'N2] dz 
e-+ m 0 (u-c)4 

(2.18) 

As noted earlier, certain modifications are required when a critical layer exists. The 
left-hand sides of the last two equations and also the form of the unknown operator 9 
must be determined by matching the above solutions of the inner problem to the 
outer solution obtained in the next section. The quantity 9 ( A )  is related to the first 
term in the long-wave limit of the dispersion relation, which, in turn, depends on the 
nature of the outer flow. When the fluid is homogeneous outside the thermoclinic 
wave guide, we know that 9 ( A )  is the first derivative with respect to 6 of the Hilbert 
transform of A (cf. Benjamin 1967; Ono 1975). 

( b )  The outer solution. The appropriate vertical length scale in the outer flow is no 
longer L, but the wavelength of the long wave propagating in the main thermocline. 
Hence, we define the stretched vertical co-ordinate 

6 = €2. (2.19) 

The scales in x and 2 are now of the same order, which must be the case for both terms 
of the Laplacian in the vorticity equation (2.3) to be of equal importance, and a 
decaying solution as 5 -+ 00 can be obtained. Then, using this scaling and the fact that 
II. is still of order unity for matching to the inner solution, we must insist that the 
perturbation buoyancy u < O($) in t'he outer region. This result, when substituted 
into equation (2.2),  leads to the restriction that N2(z 4 co) < O(c2). Hence we find 
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N o  

Frequency 

Wavenumber 

FIGURE 2. A schematic dispersion diagram for thermoclinic wave guides 
like those depicted in figure 1. 

that the requirement for long waves to be ducted along an internal wave guide with 
characteristic frequency No surrounded by an unbounded domain with characteristic 

(2.20) 
frequency A?, is 

where a is the wave amplitude. This condition is illustrated schematically in figure 2, 
where a composite dispersion diagram is included. The ducted wave modes can exhibit 
weakly nonlinear, long-wave behaviour (i.e. KdV-type motions) only if the amplitude 
is large enough relative to the ambient environment. 

a/L 2 O(Nm/N,), 

To analyse the outer flow we take 

limN(z) = e x r n ,  Nrn = O ( i ) ,  
2-00 

(2.21) 

and write the following asymptotic expansions for the dependent variables 

+outer = $ ( I ) ( [ ,  g, 7) + €$@) + . . . , (2.22) 

goouter = &{3(1)([, g, 7) + € 8 2 )  + . . .}. (2.23) 

The leading-order problem can be expressed as 

{a& + atc + as} $1) = o , a=-- Jv-, - constant, 
IUrn-cI 

(2.24) 

plus a radiation condition such that $(l) vanishes as 5 --f 00 and the solution is composed 
only of waves with a group velocity directed away from the main thermocline. At 
next order the field equation is 

(2.25) 

and the boundary condition a t  6 = 0 must be obtained from the higher-order terms 
in the inner solution. Since we are primarily interested in the leading-order terms in 
the amplitude evolution equation, we focus on the solution to (2.24). 

The problem defined by equation (2.24) is a classical one in the theory of mountain 
lee waves in a uniform stratified flow (cf. Queney et al. 1960; or Miles 1968). The 
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important difference in the present context is that the ‘mountain shape ’ is determined 
by matching the inner and outer solutions, and it may also depend (slowly) on time. 
For this reason we sketch briefly the solution for @) and demonstrate the matching. 

The solution ia  most readily achieved by Fourier methods. Defining the transform 

$(l)(k, 5 , ~ )  = /:m @l)(g, 5 , ~ )  e-ikc d t ,  

the solution $(l) satisfying the radiation condition and the 

(2.26) 

boundary condition for 
c c Urn is 

(2.27) 
exp [- C(k2- a2)3], lkl > a, 

0 < k < a, @(k, Q 7) = G(k, T )  exp [i5(a2- k2)*J, i exp[-i6(a2-k2)~J, -a < k < 0. 

The opposite choice of signs in the exponent must be taken when c > Urn for the 
solution in the range -a  < k < a. This is the crucial step and corresponds precisely 
to the result obtained in Lyra (1943). Taking the inverse transform and expanding 
the solution for 5.1 0, we obtain the matching condition 

- p ( d 5 c + a z d ) + 0 ( p ) ,  (2.28) 

where *I denotes the Hadamard finite part of the integral (cf. Hadamard 1923). 
The function q ( x )  is the Bessel function of the second kind of order 1 and Zl (x) is 
the Struve function of order 1 (cf. Abramowitz & Stegun 1967). The latter term 
describes the energy loss or wave drag resulting from the fact that the ambient medium 
can support internal waves. I ts  magnitude is proportional to a and, hence, vanishes 
when the stratification in the outer environment tends to zero. The first term in the 
integrand describes the ‘potential-Iike’ motion in the outer flow and is singular. 
However, since the dominant contribution will come from the neighbourhood of the 
singularity, we can write 

(2.29) 

The right-hand side is identical with that obtained when the fluid outside the wave 
guide is homogeneous. The error involved in the approximation (2.29) is O(a) for 
weak stratification in the outer region. This approximate relation is used exclusively 
in what follows. 

The evolution equation (2.16) can now be determined uniquely using the result 
given in (2.28). Choosing the following normalization for the leading-order eigen- 

(2.30) 
function 

lim $ ’ ( z )  = 0, lim Q ( z )  = 1, 
e+ m z+m 

the matching with the outer flow yields 

T d ( k . 2  7) = A(5 ,7 ) ,  (2 .3 ta )  
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limf’(z) = - ly 

limg(z) = 0, 

W a g  

a+co 

(2 .31b)  

( 2 . 3 1 ~ )  

The evolution equation (2 .16)  can then be written as 

with the coefficients 6 and y defined by 

(2.33 a) 

Explicit evaluation of the coefficients for specific flow configurations together with 
further discussion of the evolution equation is deferred to later sections. 

2.3.  Singular modes 

As noted earlier, long-wave solutions with critical layers are possible provided that 
nonlinearity rather than dissipation is the dominant effect there. In  such cases, the 
integrals in (2 .10)  and (2 .33)  do not exist and a different solvability condition must be 
employed. The procedure will be demonstrated with specific examples in $ 3 .  This 
section, however, deals with the nonlinear equations that apply in the critical layer 
itself. Only an outline is given because it develops that the equations and solution 
procedure are practically identical to that given by Maslowe (1972).  

For the purposes of the present paper the principal result we require from the 
nonlinear critical-layer theory is that the eigensolutions behave as Iz -zClifi” on 
either side of the critical point. In  the terminology of stability theory, there is no 
phase change, i.e. the constants multiplying the Frobenius expansions are the same 
on both sides of 2,. A streamline pattern that is symmetrical about z, in the critical 
layer is compatible with the above requirement. At this point, some readers may wish 
to proceed directly to $ 3 .  However, for the interest of those familiar with the non- 
linear critical-layer theory the modifications that take place in the long-wave limit 
are indicated immediately below, 

To reiterate a now well-known result, nonlinearity dominates in the critical layer 
when the parameter h < 1, where h is the cube of the ratio of the diffusive to the 
nonlinear boundary-layer thickness. For the KdV case h = R being the 
Reynolds number, whereas in the deep-water limit h = (Rs3)-l. The appropriate 
critical-layer variables for a nonlinear balance are 

and 
(2 .34)  
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where '4'" includes the mean flow in a frame of reference moving with the wave speed. 
In  terms of these variables, the vorticity and temperature equations in the critical 

(2.35) 
layer become 

{€* aT + @z a, - @, a,} @zz + J ,  o, = @zzzz 

and 
h 

Pr {€+ aT + Qz a, - 0, a,> 0 = - ozz, (2.36) 

where Pr and J ,  are, respectively, the Prandtl number and Richardson number a t  
the critical point and higher-order terms have been omitted. 

Neglecting the h term, a t  least initially, it is clear that  the quantities Q and 0 
should be expanded in powers of €4. I n  order to determine the basic flow structure, 
only the solution a t  lowest order is required. Thus r does not appear explicitly to 
this order and we obtain from (2.36) and (2.35), respectively, 

@(O) = F(@(O), r )  and @gL = J,ZP&, + G(Q(O), 7). (2.37) 

The functions F and G are arbitrary aside from the asymptotic conditions 

F - (2@(0))* and G N 1-4 as Q(0) + 00. (2.38) 

These quantities can be fixed by imposing secularity conditions upon the O(h) 
perturbations to @(O) and W0). However, our goal here is primarily to compute stream- 
line patterns outside the dividing streamIine in the critical layer. It was observed in 
Maslowe (1972) that  for this purpose it is sufficient simply to set F and G to their 
asymptotic values. Note that (2.37) is essentially an ordinary differential equation 
expressing @(O) as a function of 2. The dependence on the other variables appears 
only in the initial and boundary conditions; thus the streamline pattern can be 
established by repeatedly solving (2.37) for various values of the parameters g and T .  

3. The eigenvalue problem 
I n  this section we present solutions of the eigenvalue problem (2.6) for several flow 

configurations and the evaluation of the respective coefficients in the evolution 
equations ( 1 . 1 )  and (1.2) for some of these flows. Both critical-layer (singular) modes 
and non-critical-layer (regular) modes are discussed. 

The general flow configuration we consider is depicted schematically in figure 3. 
This particular model was chosen because it permits explicit analytical results and 
the use of broken-line profiles to approximate smooth flows is reasonable in the 
long-wave limit. Using the half-width L of the shear layer as the length scale and Uo 
as the velocity scale, the eigenvalue equation within the shear layer is 

T 

J 
$" + - $ = 0, 

(2 - c)2 
-1 < 2 <  1 ,  

where J = N $ / ( U ' ) 2  is the (constant) Richardson number. We are interested prin- 
cipally in the linearly stable case when J > $ and the solution, both for regular and 
singular modes, can be written as 

$ = Iz-cl*cos(,ulnIz-cl -A) )  (3.2) 

where p = (J - $)J and A is an arbitrary phase constant determined by the interface 
mat'ching conditions. I n  the regions of homogeneous fluid above and below the shear 
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FIUURE 3. Flow model of the eigenvalue problem. 

J = 5 , n = 2  

L J = 2 . 5 , n =  1 

z = l + h  

z =  1 

z = o  

z = - 1  

z=- (1  + d )  

s 
11, 0-7 - 

- . 
0 

J = 5 , n =  1 

0.6 - 

- 
J = 8 , n = l  

0 . 5  - 
I I f I 1 

0.001 0.0 1 0.1 1 .o 10 100 
h = d  

FIGURE 4. The long-wave phase speed as a function of boundary position 
for symmetrically located boundaries. 

layer, the solution for arbitrary wavenumber k which satisfies the boundary conditions 
is 

and $=B_sinhk(z+l+d) ,  - ( l + d )  < z <  - 1 .  (3.3b) 

Of course, we have in mind the limit k 4 0 which has already been imposed in (3.1), 
but the above form is useful in determining the dispersive corrections arising from the 

q5 = B+sinhk(z-1-h), 1 < x < l + h ,  ( 3 . 3 4  
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FIQURE 5. Eigenspeeds for long waves either in stratified Couette flow 
(d = h = 0) or an unbounded stratified shear flow (d = h = co). 

presence of uniform flow regions adjacent to the shear layer. Invoking the kinematic 
condition (continuity of 4) and the dynamic condition (matching of the pressures) 

a t  the interfaces x = & 1, where 5 . .  .Ji denotes the difference in the bracketed quantity 
evaluated immediately above and below the interface, we obtain the eigenvalue 
condition 

(3.5) 
p { h ( l + c ) - d ( l  - c ) ]  

tan pln - = 1 ( :I) (1 - c2) -ad (  1 - c)  - $h( 1 + c )  + hd(pu2 + &) ' 

Certain limits of this expression are interesting to consider. First, taking either the 
limit d = h = 0 (Couette flow) or d = h + 03, we obtain the same eigenvalue condition, 
namely 

c =  f t anh  - ,  n = 0 , 1 , 2  ,..., (3 
for critical-layer modes and 

c =  fcoth - , n = l , 2 , 3  ,..., (3 (3.7 1 
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6 

for non-critical layer (internal wave) modes. The latter relation for the case with 
d = h = 0 was first given by Hoiland (1953), but the singular modes have not been 
considered before. The stationary (n = 0) singular neutral mode in (3.6) was found 
numerically by Maslowe (1973), but the propagating modes (0 < IcI < i),  which were 
conjectured to exist in that paper, are exhibited here explicitly. That the eigenvalue 
relation is the same for both depth limits is unexpected. However, this is due to the 
fact that the pressure is constant on the boundary of the shear layer in the long-wave 
limit for both cases. Numerical calculzLtions of the eigenvalue c as a function of the 
boundary position for the symmetric case with d = h is shown in figure 4 for several 
Richardson numbers. The waves first speed up as the boundaries are removed and 
then slow down again as the boundaries become one thermocline thickness or more 
distant from the wave guide. Computations of (3.6) and (3.7) for different mode 
numbers n are presented in figure 5 .  As n increases, the modes become more packed 
into the corners of the shear layer. Some typical eigenfunctions are presented in 
figure 6.  

Another useful limit of (3.5) is to take d = 0 and h +. 00, in that order. Then, if one 
makes a Galilean transformation and rescales the shear-layer thickness to correspond 
to the configuration shown in figure 7, the eigenvalue condition takes the form 

, n = 0 ,  + i , 2 2 ,  ..., 
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@ 

for critical-layer modes and 

c = 1 - exp - tan-1 ( 2 p )  - nT]]-l, - n = 0 , + 1 ,  + 2  ,..., { [; P (3.9) 

for (non-singular) internal wave modes. 
Another limit process of some interest is the behaviour of the modes for large Richard- 

son numbers. For singular modes the long-wave phase speed varies as nJ-). For the 
internal wave modes described by (3.7),  the limit J 9 1 or, more appropriately, the 
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# 

FIGURE 6. Typical eigenfunctions for: (a )  singular modes in an unbounded shear flow (d = h = a, 
J = 5 ) ;  ( b )  singular modes in Couette flow (d = h = 0,  J = 5 ) ;  and ( c )  internal wave modes in 
Couette flow (J  = 8). The value z, denotes the location of the critical level. 

limit F 4 0 when using the scaling in (2.4), yields 

c * =  +. N b (  1+- (:$+...I, 1 < n < o o ,  
nn 

and in (3.9) it  yields 

(3.10) 

(3.11) 

In  the last two expressions the variable c* is used to denote the dimensional phase 
velocity and b is the thickness of the stratified layer with constant Brunt-Viiisalii 
frequency No. For the unbounded case (d = h -+ a), there is an additional mode 
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FIGURE 7. Eigenspeeds for a boundary-layer flow model. 

corresponding to the interfacial (gravity) wave mode, but it has an unbounded long- 
wave phase velocity and is excluded from the analysis here. 

3.1. Kd V coeficients 

We present here the calculation of the coefficients a and p (cf. equations ( 1 . 1 )  and 
(2.10)) appearing in the KdV equation for the special case of stratified Couette flow 
(viz. figure 3, d = h = 0) .  The long-wave phase speed for these modes is given by 
(3.6) and (3.7) with the eigenfunction (3.2).  Because the integrals in (2.10) do not 
exist for the singular modes, we evaluate the coefficients by solving directly equations 
(2.8) and (2.9) for the second-order modal functions, invoking the result of the non- 
linear-critical-layer analysis that there is no phase change across the critical layer 
even to this order, and then apply the homogeneous boundary conditions at  z = 2 1. 
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The general solutions of equations (2.8) and (2.9) are 

# ) ( z )  = a$!)lz-cI*cos(pln Iz-cI -A$)) 
[z-c]% -- (p sin (p In Iz - cI -A)  + cos (p In Iz - cI -A) )  
4 J +  3 

+P(  sple!cy:) (psin(,uInlz-cl -A)-gcos(plnIz-cl -A))) (3.12) 

and #E)(z) = a~)lz-cI*cos(plnlz-cI -A$)) 

sgn ( z  - c) 
(p sin (p In Iz - c] - A) - 9 cos (p In ] z  - c ]  -A)) 

Iz-cp +a 

3J ( z -c l  -A)  

- p  sin 2(p In Iz - C I  - A)]) . (3.13) 

The first terms in each expression are the homogeneous solutions with amplitudes 
a(2) and phases A(2). The constant A is already determined by the leading-order solution 
to be 

P (n+ 1 ) ~  
2 .  2 

A =-In ll-c21- (3.14) 

Then, applying the boundary conditions, we obtain the results 

2c( 1 - c2) p = -  
(3.15) 1 4 J + 3  ' 

p (1 - c)Q - ( - 1)" (1 + c)$ a=- 
J + 2  (1  - C2)+ 

for singular neutral modes ( -  1 < c < 1). Observe that both coefficients vanish for 
the n = 0 mode, for which c = 0. That P = 0 for this mode reflects the fact that it is 
dispersionless and exists for all wavenumbers and J > 4. It is surprising that the 
nonlinear terms are zero to this order also. As we demonstrate later, the same results 
are obtained for the unbounded case d = h +- co. However, any asymmetry in the 
boundary position (d + h) will lead to non-zero values for a and ,8. 

An important parameter which appears in the solitary-wave solution of (1 .  l),  viz. 

A(& 7) = sgn (UP) sech2{K([ - c(%)}, 

is the wavenumber K defined by 

c( 1 - C2)* 

(3.16) 

(3.17) 

As J J. &, the phase speed behaves as IcI + 1 and K is unbounded. The eigenfunction 
solution does not permit discussion of the point J = k, but the limit shows that the 
solitary wave for these singular modes gets progressively shorter as the linear stability 
limit is approached. As J -+ 00, K is proportional to J t  for odd n and is proportional to 
J* for even n. The wavenumber has a minimum a t  intermediate values of J .  Hence, 
for a fixed wave amplitude and thermoclinic length scale, the solitary wavelength 
depends strongly on the Richardson number, especially for 4 < J < 1. 
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FIGURE 8. Flow model and notation for the unbounded shear flow with weak 
background stratification outside the main thermocline. 

When IcI > 1 and d = h = 0,  the corresponding values for the coefficients are 

2c(c2- 1 )  
p =  4 J + 3  ’ 

/% 11 +c l%- (  - l)m 11 - c p  
= -- 

J + 2  (c2 - l)* 
7 (3 .18)  

where c is given by ( 3 . 7 ) .  The integrals in (2 .10)  are well-defined in this case and 01 
and p can be evaluated directly, although the computation is lengthy. 

3.2.  mdKdV coeflicients 

The evaluation of the coefficients y and 6 in equation (1 .2 )  for the flow model displayed 
in figure 3 requires a somewhat different analysis from that presented in $2. This 
occurs because no intermediate overlap domain exists where both the inner and outer 
solutions have a common region of validity when the derivative of the eigenfunction 
is discontinuous a t  some interior point. Instead, the matching of the solutions must 
be accomplished a t  the interface locations z = h + qu(x, t )  and z = - h + vl(x, t )  (see 
figure 8 ) ,  where vu and vl are the interface distortions a t  the upper and lower corners 
of the stratified shear layer, respectively. The matching conditions that must be 
applied a t  both interfaces are the kinematic condition 

Dv w = -  
Dt  

(3.19) 

and the condition that the total pressure is continuous across each interface 

uptotaln = 0. (3 .20)  

The bracket symbol [. . .I] denotes the difference between the bracketed quantity 
evaluated immediately above and below a particular interface. 



340 8. A .  Maslowe and L.  C .  Redekopp 

Referring to the flow configuration shown in figure 8, the undisturbed pressure field 
is given by 

(3 .21)  
2 c h. Po 

Then, using the normalization discussed in 6 2 and writing the pressure as 

for the inner region ( -  1 c c l ) ,  and 

(3.22) 

(3.23) 

for the outer region ( Iz I  > Z), we obtain the sequence of pressure-matching conditions 

+ qf) I *=l- = (72’ Pi) 12=1+, ( 3 . 2 4 ~ )  

(3 .24b)  

Similar conditions apply a t  z = - 1 and the interface displacements have been ex- 

(3 .25)  
panded as 

The pressure terms for the inner layer are related to the stream function by 

( p  + * (T$’ )2 P,” + 7/$) Pi + qf) p“) I z=l- = (@‘” + g(q&’)2 P,” + Pi) 

Ti = h[€qp + €27$2) + ...I, i = u, 1. 

p‘”= - ( U - C y )  + U ’ p  =A(~ ,7 ) {U‘#- (U-C)q5‘ } ,  ( 3 . 2 6 ~ )  

p@) = - (U  - c )  $i2) + U’f2 )  - $A2((#’)2- ##”I - 4 ’1  A,  d t ,  (3 .26b)  
5 

and, for the outer layer, we have the result 

Noting that Pl is continuous across the interfaces, the first pressure matching con- 

(3.28) 
dition yields 

This is just the eigenvalue condition for c and shows that, to leading order, the pressure 
perturbation vanishes a t  the shear-layer edges. The first-order kinematic conditions 
lead to the relations 

p y l )  = @)(  - 1 )  = 0 .  

and 
(3 .29)  

where the upper and Iower signs apply for qu and w, respectively. 
To complete the derivation of the amplitude equation and the evaluation of the 

coefficients, we need the solution of $@) from (2 .14)  to substitute into the second of 
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the pressure matching conditions. It turns out that the separation invoked in (2.15) 
and (2.16) is too restrictive when the outer flows above and below the shear layer are 
not identical (Nm+ 4 NmJ. Instead, we write the solution for $(2) in the form 

P 

?p)= A a p + ( p , d g ) p  2 r  + Y ( A ) $ p ,  (3.30) 

where the last term is an arbitrary function of the amplitude A multiplied by the 
sohtion of the homogeneous equation. The functions $8) and q5i2j are just the appro- 
priate particular solutions for the nonlinear and linear terms on the right-hand side 
of (2.14). The pressure matching condition then yields the two equations 

%+A7 + a 2 + q  + a3+{9-(4}E = a4+- a t  ’ 

(3.31) 

where the coefficients, for the flow model depicted in figure 8, have the definitions 

a1* = {--(U-4$i2)’+ v’$t2)-$’>/z=*1, (3.32 a) 

(3.32b) 

U3f = { - ( U  - c) $42’’ + Ut$d2’}Iz=*1, 

a4f = f {$(U - C)>lz,*1. 

( 3 . 3 2 ~ )  

(3.32d) 

Compatibility requirements on the quantity Y ( A )  in the two equations then yield 
the evolution equation 

(3.33) 
81- A,  + yAA,- 8,- ar+ - &-- = 0, 

a< a< 
and the coefficients have the values 

a2+ a3- - a2- a3+ 

= a,+u3- - a,-a3+’ 

a4,ta3r 8* = &- 
a1+a3- - al-a3+ 

(3.34 a) 

(3.343) 

Based on the above results, we present values for y and 8, for four specific flow 
models. Model I(a) corresponds to  the unbounded stratified shear flow shown in 
figure 8 and model I ( b )  corresponds to the semi-infinite configuration in which a solid 
boundary is placed at  z = 0. Models I1 (a) and I1 ( b )  are similar but the shear is taken 
to be zero (i.e. U, = 0). For models I(a, b )  the eigenfunction is given by (3.2) and the 
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FIGURE 9. Outer streamline pattern for model T(a)  with J = 5 ,  n = 1 and 6 = 0.25. 

functions #j2) and #i2) are given by the last bracketed terms in equations (3.12) and 
(3.13), respectively. For model I1 (a) ,  the appropriate solutions are 

4 = s i n ( T n z ) ,  2n- 1 

(3.35) 

for the odd modes and # = cos (nnz), 1 
1 

nn' 
c = -  

' n = 1,2,  ..., (3.36) 

I z #i2) = - -sin (nnz), 
C2 

for the even modes. The function #i2) is identically zero for both the even and the odd 
modes of model I1 (a).  This is expected from the earlier discussion following equa- 
tion (2.10). Only the odd modes which automatically satisfy the required condition 
on a solid boundary a t  z = 0 are permissible for model I1 ( b ) .  Then, substituting these 
results into the coefficient expressions (3.32), we obtain the results shown in table 1 
for y and a*. The stationary singular mode (n = c = 0) for model I(a) has y = 0. 
Also, the dispersive terms in the evolution equation (3.33) will exactly cancel if the 
flows above and below the shear layers are identical (i.e. N,+ = N,J Under these 
conditions, this particular mode is dispersionless as explained earlier. The coefficients 
are non-zero for the remaining discrete set of modes for both models I(a, b ) .  The 
coefficient y of the nonlinear term vanishes identically for all even modes in model 
II(a). This occurs because of the symmetry of the eigenfunction and the flow con- 
figuration. A nonlinear dispersive balance can be achieved on a longer time scale 
O(c4)  leading to an equation with cubic nonlinearity. The non-zero value of y for the 
odd modes in the Boussinesq approximation results entirely from the nonlinear terms 
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in the interface matching condition (3 .24b)  where the gradient of the Brunt-Vaisala 
profile is non-zero (cf. equation (2 .333) ) .  The solution for the first odd mode in model 
I1 (a) was given earlier by Davis & Acrivos (1967). 

In  figure 9 we present an example of the streamline pattern for a singular mode in 
the unbounded case (i.e. flow model I ( a ) ) .  Only the outer structure is exhibited in the 
figure because the dividing streamline shape varies somewhat depending on the wave 
amplitude and the ambient Richardson number. This occurs because the vertical 
wavelength of the eigensolution (3 .2 )  depends strongly on these parameters near the 
critical level. The eddy structure corresponding to the singular solutions presented 
here as well as the influence of finite Reynolds numbers on these patterns is deserving 
of further study. 

4. The radiation damping of a solitary wave 
We have shown that finite-amplitude long waves can be ducted along a thermo- 

clinic wave guide providing the ambient environment above and below the wave guide 
is only weakly stratified. The weak stratification in the outer regions supports internal 
wave motion and, therefore, serves as an energy sink for waves propagating in the 
main thermooline. In this section we compute the damping rate resulting from this 
wave-drag mechanism and give the decay characteristics for a solitary wave. 

The desired results can be derived most readily from the evolution equation (2 .32) .  
It is convenient for this purpose to rewrite the equation with the kernel of the integral 
operator replaced by its integral representation 

I 00 

= - Gsgn (U, -c)/  A([’ ,  7) d c  ( k / : k ( a 2 -  k2 ) i  cos k(E- 6’)dk . (4.1) 
--m 

The coefficient &sgn(U,-c) is positive for all cases investigated here and must be 
so in general if the term on the right-hand side is to represent an energy loss. It is 
clear from ( 2 . 3 3 ~ )  that, in the absence of velocity shear, Ssgn (U, - c )  is positive, but 
we have not been able to provide a general proof of this result. Suppose A(C,7) corre- 
sponds to some localized wave packet. Then, after integrating the equation once with 
respect to the spatial co-ordinate 5, one obtains 

This relation shows that the volume of the packet is conserved. If the equation is first 
multiplied by A and then integrated, the energy decay law 

is obtained, where F ( k ,  7) is the Fourier transform of the wave profile 

P ( k ,  7 )  = O0 A (5, 7) eikc dk. 
-a 
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This demonstrates that the term on the right-hand side of the evolution equation 
describes an energy loss and that the decay rate vanishes in the limit as the density 
stratification in the outer region approaches zero (i.e. a -+ 0). Corresponding results 
for periodic wave trains can be derived by integrating over one wave period. 

The damping characteristics of a solitary wave, which is a solution of (4.1) with the 
right-hand side equal to zero, can be computed directly from (4.3). The solitary-wave 
solution for this special adiabatic case is given by 

with 

( 4 . 5 4  

(4 .5b)  

The first property says that the volume of the solitary wave is independent of the 
amplitude of the wave. Thus, as the wave amplitude decreases, the wavelength 
increases to preserve the volume. Evaluating (4.3) for this case, we find that 

where 

The functions I,(P) are the modified Bessel functions of the first kind and the L,(P) 
are the modified Struve functions. The function f(P) has asymptotic forms 

nP limf(P) = 6- -+..., 
P O  

1 
limf(/3) N - 

16 

P " 0  P 2  

( 4 . 8 ~ )  

(4.8b) 

Corresponding to these two limiting cases, the decay law for a solitary wave with 
amplitude a is, respectively, 

( 4 . 9 ~ )  
62 

(a, - a )  = Ea3- 3 (7-7~), 

(4.9b) 

Suppose that initially the solitary wave is quite steep (ah < 1) .  Then, for fixed a, 
the wave will begin to decay linearly with time according to (4.9a) and eventually, 
as h becomes large to maintain (4.2), the decay will follow (4.9b). For intermediate 
values of ah or intermediate times, the decay will follow a curve which is a monotonic 
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transition between the above asymptotic results. It is interesting that the damping rate 
depends quite differently on the coefficient of the nonlinear term y in the two limits. 
Of course, these decay laws are only applicablefor waves of sufficiently large amplitude 
so that the ducting condition (2.20) is satisfied. When the amplitude drops below this 
critical level the wave will disperse throughout the fluid column. 

These results can be used to estimate the persistence of long waves propagating in 
a thermoclinic wave guide. To be specific, consider the case designated by model 
I I ( b )  in the previous section and shown schematically in table 1. Suppose that a 
solitary wave with initial amplitude a,* is generated and that the appropriate decay 
law is given by ( 4 . 9 ~ ) .  Then the distance, denoted by z$, that the wave travels before 
decaying to one-half its initial amplitude can be estimated to be 

The quantity A$ is the initial length of the solitary wave. The environment surrounding 
the wave guide has a strong influence on the persistence of coherent, long-wave 
packets. 

5. Concluding remarks 
The effect of shear on long waves in a stratified flow has been analysed and two 

types of wave modes have been identified. The first class, those with phase speeds 
outside the range of flow velocities, reduce to the familiar internal wave modes in the 
absence of shear when the Richardson number is large. The other class, those with 
phase speeds within the range of flow velocities, are termed singular modes since the 
velocity and density perturbations are discontinuous across the critical level where 
the wave speed matches the flow velocity. We have identified a set of singular modes 
which are consistent with finite-amplitude waves at  high Reynolds numbers so that 
nonlinearity dominates over viscous and thermal diffusion within a thin layer at  the 
critical level. For a shear layer, this set of singular modes consists of a non-dispersive 
mode that moves with the mean velocity and an infinite set of discrete modes which 
are dispersive. The discrete modes have critical levels which are densely packed into 
the corners of the shear layer. The speed of these wave modes has a peculiar dependence 
on the location of solid boundaries in the proximity of the shear layer. The waves first 
speed up as the boundaries are moved away from the shear layer and then slow down 
again as they become more remote from the layer. One aspect which we have not 
explored here is the completeness of the set of modes consisting of both the internal 
wave class and the singular class, and the representation of an arbitrary disturbance 
in a stratified shear flow with the Richardson number everywhere greater than one- 
quarter in terms of these modes. 

The flow models studied here should prove sufficient to estimate the dependence of 
long-wave parameters (e.g. the solitary wavenumber) on the Richardson number. 
They also represent cases where explicit analytical results can be obtained for non- 
trivial environments. Perhaps the simplest model for assessing the first-order effects 
of stratification and shear is that of two homogeneous layers of fluid having different 
density and velocity. Denoting the upper-layer density p,,  depth h,, and velocity 
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Ul = U and the lower-layer density pz > p l ,  depth h,, and velocity U, = - U ,  the 
amplitude equation for the interfacial displacement ~ ( x ,  t )  in the long-wave limit is 

where 

For the evolution equation to be meaningful, the velocity must be small enough to 
ensure that co is real. At the condition of marginal stability when the bracket term in 
(5 .2 )  vanishes, the denominator of the coefficients in the evolution equation also 
vanishes. For these critical shears, the evolution equation is second order in time. 
I n  the deep-water limit (h,  --f a), the appropriate equation is 

where (5.4) 

Using these models, the wavenumber for solitary-wave solutions (cf. equations (3.17) 
and ( 4 . 4 ) )  of these equations has the following dependence on the shear for I U/col < 1 ;  

h2, - h2, c0 
(5.5) 

These results may be useful in special cases where only the lowest mode is energetic, 
but information about the higher modes and, in particular, critical-layer modes is 
totally lacking. 

The preceding analysis has also shown how the ambient stratified environment 
influences the propagation of weakly nonlinear, long internal waves. The (weak) 
stratification outside the primary thermoclinic wave guide acts as an effective energy 
sink via wave radiation, thereby limiting the lifetime of ducted wave modes. The 
stratification external to the wave guide also specifies an amplitude minimum below 
which long waves cannot remain ducted along the guide. These results place important 
restrictions on the amplitude and the duration of possible long-wave phenomena to 
be found in the atmosphere and ocean. However, a converse situation is also sug- 
gested, namely that internal waves outside the wave guide may reinforce a wave 
packet propagating in the wave guide. Although the required conditions are, perhaps, 
very special for such a favourable interaction, its possibility cannot be ruled out a t  
this stage. 

This work was supported by the U.S. National Oceanic and Atmospheric 
Administration (S.A.M.) and by the Planetary Atmospheres Program of the National 



348 8. A. Maslowe and L. G. Redekopp 

Aeronautics and Space Administration under Grant NGR-05-018-178 (L.G.R.). The 
first author also acknowledges the support of the J. S. Guggenheim Foundation 
during the 1978-1979 academic year. 

R E F E R E N C E S  

ABRAMOWITZ, M. & STEGUN, I. A. 1967 Handbook of Mathematical Functions. Washington: 
National Bureau of Standards. 

APEL, J. R., BYRNE, H. M., PRONI, J. R. & CHARNELL, R. L. 1975 Observations of oceanic 
internal and surface waves from the Earth Resources Technology Satellite. J. Geophys. Res. 

BENJAMIN, T. B. 1966 Internal waves of finite amplitude and permanent form. J. Fluid Mech. 

BENJAMIN, T. B. 1967 Internal waves of permanent form in fluids of great depth. J. Fluid Mech. 

BENNEY, D. J. 1966 Long nonlinear waves in fluid flows. J .  Math. Phys. 45, 52-63. 
CHEN, H. H., LEE, Y. C. & PEREIRA, N. R. 1979 Algebraic internal wave solitons and the inte- 

CHRISTIE, D. R., MUIRHEAD, K. J. & HALES, A. L. 1978 On solitary waves in the atmosphere. 

DAVIS, R. E. & ACRIVOS, A. 1967 Solitary internal waves in deep water. J. Fluid Mech. 29, 

FARMER, D. M. & SMITH, J. D. 1978 Nonlinear internal waves in a fjord. Hydrodynamics of 

HADAMARD, J. 1923 Lectures on Cauchy's Problem in Linear Partial Differential Equatiom. 

HOILAND, E. 1953 On the dynamic effect of variation in density on two-dimensional perturba- 

JOSEPH, R. I. 1977 Solitary waves in a finite depth fluid. J. Phys. A, Math. Gem. 10, L225-L227. 
KEULEOAN, G. H. 1953 Characteristics of internal solitary waves. J. Res. Nat. Bur. Stand. 51, 

KUBOTA, T., KO, D. R. S. & DOBBS, L. 1978 Weakly-nonlinear, long internal gravity waves in 
stratified fluids of finite depth. J. Hydromutics 12, 157-165. 

LEE, C. & BEARDSLEY, R. 1974 The generation of long nonlinear internal waves in a weakly 
stratttified shear flow. J. Qeophys. Res. 79, 453462.  

LONG, R. 1965 On the Boussinesq approximation and its role in the theory of internal waves. 
Tellus 17, 46-52. 

LYRA, G. 1943 Theorie der stationaren Leewellenstromung in freier Atmosphare. 2. alzgew. 
Math. Mech. 23, 1-28. 

MASLOWE, S. A. 1972 The generation of clear air turbulence by nonlinear waves. Stud. Appl. 
Math. 51, 1-16. 

MASLOWE, S. A. 1973 Finite-amplitude Kelvin-Helmholtz billows. Boundary-Layer Met. 5, 

MATSUNO, Y. 1979 Exact multi-soliton solution of the Benjamin-Ono equation. J. Phys. A, 

MILES, J. W. 1968 Waves and wave drag in stratified flows. Proc. 12th Int. Cong. Appl. Mech., 

ONO, H. 1975 Algebraic solitary waves in stratified fluids. J. Phys. Xoc. Japan 39, 1082-1091. 
PETERS, A. S. & STOKER, J. J. 1960 Solitary waves in liquids having non-constant density. 

QUENEY, P., CORBY, G., GERBIER, N., KOSCHMIEDER, H. & ZIEREP, J. 1960 The airflow over 

REDEKOPP, L. G. 1977 On the theory of solitary Rossby waves. J. Fluid Mech. 82, 725-745. 
SATSUMA, J., ABLOWITZ, M. J. & KODAMA, Y. 1980 On an internal wave equation describing a 

80, 865-881. 

29, 241-270. 

29, 559-592. 

grable Calogero-Moser-Sutherland N - body problem. Ph ys. Fluids 22, I 8 7- 18 8. 

J .  Atmos. Sci. 35, 805-825. 

593-607. 

Estuaries and Fjords (ed. J. Nihoul). Elsevier. 

Yale University Press. 

tions of flow with constant shear. Geophys. Publ. 18, no. 10. 

133-140. 

43-52. 

Math. Gen. 12, 619-621. 

Stdnford, pp. 50-75. 

Comm. Pure Appl. Math. 13, 115-164. 

mountains. World Meteor. Organizdtion, Tech. Note 34. 

etratified fluid with finite depth. Phys. Lett. A (to appear). 




